99 research outputs found

    Data-driven design of intelligent wireless networks: an overview and tutorial

    Get PDF
    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves

    On Designing a Machine Learning Based Wireless Link Quality Classifier

    Full text link
    Ensuring a reliable communication in wireless networks strictly depends on the effective estimation of the link quality, which is particularly challenging when propagation environment for radio signals significantly varies. In such environments, intelligent algorithms that can provide robust, resilient and adaptive links are being investigated to complement traditional algorithms in maintaining a reliable communication. In this respect, the data-driven link quality estimation (LQE) using machine learning (ML) algorithms is one of the most promising approaches. In this paper, we provide a quantitative evaluation of design decisions taken at each step involved in developing a ML based wireless LQE on a selected, publicly available dataset. Our study shows that, re-sampling to achieve training class balance and feature engineering have a larger impact on the final performance of the LQE than the selection of the ML method on the selected data.Comment: accepted in PIMRC 2020. arXiv admin note: text overlap with arXiv:1812.0885

    Towards Sustainable Deep Learning for Multi-Label Classification on NILM

    Full text link
    Non-intrusive load monitoring (NILM) is the process of obtaining appliance-level data from a single metering point, measuring total electricity consumption of a household or a business. Appliance-level data can be directly used for demand response applications and energy management systems as well as for awareness raising and motivation for improvements in energy efficiency and reduction in the carbon footprint. Recently, classical machine learning and deep learning (DL) techniques became very popular and proved as highly effective for NILM classification, but with the growing complexity these methods are faced with significant computational and energy demands during both their training and operation. In this paper, we introduce a novel DL model aimed at enhanced multi-label classification of NILM with improved computation and energy efficiency. We also propose a testing methodology for comparison of different models using data synthesized from the measurement datasets so as to better represent real-world scenarios. Compared to the state-of-the-art, the proposed model has its carbon footprint reduced by more than 23% while providing on average approximately 8 percentage points in performance improvement when testing on data derived from REFIT and UK-DALE datasets
    corecore